References

Altman, N., and M. Krzywinski. 2017. “Interpreting P values.” Nature Methods 14 (3): 213–14. https://doi.org/10.1038/nmeth.4210.

Anderson, T. W. 2003. An introduction to multivariate statistical analysis. 3rd ed. Wiley-Interscience.

Annicchiarico, P. 1992. “Cultivar adaptation and recommendation from alfalfa trials in Northern Italy.” Journal of Genetics and Breeding 46: 269–78.

Baker, Monya. 2016. “Statisticians issue warning over misuse of P values.” Nature 531 (7593): 151–51. https://doi.org/10.1038/nature.2016.19503.

Bartlett, M. S. 1947. “The Use of Transformations.” Biometrics 3 (1): 39–52. https://doi.org/10.2307/3001536.

Bates, D. M., and D. G. Watts. 1988. Nonlinear Regression Analysis and Its Applications. 2nd ed. Wiley Series in Probability and Statistics. Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9780470316757.

Blalock, H. M. 1963. “Correlated independent variables: The problem of multicollinearity.” Social Forces 42 (2): 233–37. https://doi.org/10.1093/sf/42.2.233.

Blanca, M. J., R. Alarcón, J. Arnau, R. Bono, and R. Bendayan. 2017. “Non-normal data: Is ANOVA still a valid option?” Psicothema 29 (4): 552–57. https://doi.org/10.7334/psicothema2016.383.

Box, G. E. P., and D. R. Cox. 1964. “An Analysis of Transformations.” Journal of the Royal Statistical Society. Series B (Methodological) 211-252: 211–52. https://doi.org/10.2307/2984418.

Breslow, N. E., and D. G. Clayton. 1993. “Approximate Inference in Generalized Linear Mixed Models.” Journal of the American Statistical Association 88 (421): 9–25. https://doi.org/10.2307/2290687.

Casella, George. 2008. Statistical Design. Springer Texts in Statistics. New York, NY: Springer New York. https://doi.org/10.1007/978-0-387-75965-4.

Charrad, Malika, Nadia Ghazzali, Véronique Boiteau, and Azam Niknafs. 2014. “<b>NbClust</b> : An <i>R</i> Package for Determining the Relevant Number of Clusters in a Data Set.” Journal of Statistical Software 61 (6): 1–36. https://doi.org/10.18637/jss.v061.i06.

Chawla, D. S. 2017. “Big names in statistics want to shake up much-maligned P value.” Nature 548 (7665): 16–17. https://doi.org/10.1038/nature.2017.22375.

Cochran, W. G. 1940. “The Analysis of Variance when Experimental Errors Follow the Poisson or Binomial Laws.” The Annals of Mathematical Statistics 11 (3): 335–47. https://doi.org/10.1214/aoms/1177731871.

Colombari Filho, J. M., M. D. V. Resende, O. P. Morais, A. P. Castro, É. P. Guimarães, J. A. Pereira, M. M. Utumi, and F. Breseghello. 2013. “Upland rice breeding in Brazil: a simultaneous genotypic evaluation of stability, adaptability and grain yield.” Euphytica 192 (1): 117–29. https://doi.org/10.1007/s10681-013-0922-2.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. “Maximum likelihood from incomplete data via the EM algorithm.” Journal of the Royal Statistical Society, Series B 39 (1): 1–38. https://www.jstor.org/stable/2984875.

Eberhart, S. A., and W. A. Russell. 1966. “Stability parameters for comparing varieties.” Crop Science 6 (1): 36–40. https://doi.org/10.2135/cropsci1966.0011183X000600010011x.

Eisenhart, C. 1947. “The assumptions underlying the analysis of variance.” Biometrics 3 (1): 1–21. http://www.ncbi.nlm.nih.gov/pubmed/20240414.

Farshadfar, E. 2008. “Incorporation of AMMI stability value and grain yield in a single non-parametric index (GSI) in bread wheat.” Pakistan Journal of Biological Sciences 11 (14): 1791–6. https://doi.org/10.3923/pjbs.2008.1791.1796.

Ferreira, D. F. 2009. Estatistica Basica. Viçosa, MG.: UFV.

Ferreira, E. B., P. P. Cavalcanti, and D. A. Nogueira. 2018. “ExpDes: Experimental Designs.” https://cran.r-project.org/web/packages/ExpDes/index.html.

Field, A., J. Miles, and Z. Field. 2012. Discovering Statistics Using R. SAGE Publications Ltd. https://us.sagepub.com/en-us/sam/discovering-statistics-using-r/book236067.

Fisher, R. A. 1925. Statistical methods for research workers. 11th ed. Edinburgh: Oliver; Boyd.

———. 1935. The design of experiments. Edinburgh: Oliver; Boyd.

Fisher, R. A., and W. A. Mackenzie. 1923. “Studies in crop variation. II. The manurial response of different potato varieties.” The Journal of Agricultural Science 13 (03): 311–20. https://doi.org/10.1017/S0021859600003592.

Friedman, M. 1937. “The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance.” Journal of the American Statistical Association 32 (200): 675–701. https://doi.org/10.2307/2279372.

Gabriel, K. R. 1971. “The biplot graphic display of matrices with application to principal component analysis.” Biometrika 58 (3): 453–67. https://doi.org/10.2307/2334381.

Galton, Francis. 1888. “Co-relations and their measurement, chiefly from anthropometric data.” Proceedings of the Royal Society of London 45 (273-279): 135–45. http://rspl.royalsocietypublishing.org/content/45/273-279/135.full.pdf.

Gauch, H. G. 1988. “Model selection and validation for yield trials with interaction.” Biometrics 44 (3): 705–15. https://doi.org/10.2307/2531585.

Gollob, H. F. 1968. “A statistical model which combines features of factor analytic and analysis of variance techniques.” Psychometrika 33 (1): 73–115. https://doi.org/10.1007/BF02289676.

Graham, Michael H. 2003. “Confronting Multicollinearity in Ecological Multiple Regression.” Ecology 84 (11): 2809–15. https://doi.org/10.1890/02-3114.

Halkidi, Maria, Yannis Batistakis, and Michalis Vazirgiannis. 2001. “On Clustering Validation Techniques.” Journal of Intelligent Information Systems 17 (2/3): 107–45. https://doi.org/10.1023/A:1012801612483.

Hartigan, J. A., and M. A. Wong. 1979. “Algorithm AS 136: A K-Means Clustering Algorithm.” Applied Statistics 28 (1): 100–108. https://doi.org/10.2307/2346830.

Henderson, C. R. 1949. “Estimation of changes in herd environment.” Journal of Dairy Science 32: 706.

———. 1950. “Estimation of genetic parameters.” Annals of Mathematical Statistics 21: 309–10.

———. 1975. “Best linear unbiased estimation and prediction under a selection model.” Biometrics 31 (2): 423–47. https://doi.org/10.2307/2529430.

———. 1953. “Estimation of Variance and Covariance Components.” Biometrics 9 (2): 226–52. https://doi.org/10.2307/3001853.

Hoerl, Arthur E, and Robert W Kennard. 1976. “Ridge regression iterative estimation of the biasing parameter.” Communications in Statistics - Theory and Methods 5 (1): 77–88. https://doi.org/10.1080/03610927608827333.

Hoerl, Arthur E., and Robert W. Kennard. 1970. “Ridge Regression: Biased Estimation for Nonorthogonal Problems.” Technometrics 12 (1): 55–67. https://doi.org/10.1080/00401706.1970.10488634.

Hu, X. 2015. “A comprehensive comparison between ANOVA and BLUP to valuate location-specific genotype effects for rape cultivar trials with random locations.” Field Crops Research 179: 144–49. https://doi.org/10.1016/j.fcr.2015.04.023.

Hubert, Lawrence, and Phipps Arabie. 1985. “Comparing partitions.” Journal of Classification 2 (1): 193–218. https://doi.org/10.1007/BF01908075.

Kaiser, Henry F. 1961. “A Note on Guttman’s Lower Bound for the Number of Common Factors.” British Journal of Statistical Psychology 14 (1): 1–2. https://doi.org/10.1111/j.2044-8317.1961.tb00061.x.

Koopman, B. O. 1936. “On distributions admitting a sufficient statistic.” Transactions of the American Mathematical Society 39 (3): 399–409. https://doi.org/10.1090/S0002-9947-1936-1501854-3.

Kozak, M., and H.-P. Piepho. 2017. “What’s normal anyway? Residual plots are more telling than significance tests when checking ANOVA assumptions.” Journal of Agronomy and Crop Science 204: 86–98. https://doi.org/10.1111/jac.12220.

Kruskal, W. H., and W. A. Wallis. 1952. “Use of Ranks in One-Criterion Variance Analysis.” Journal of the American Statistical Association 47 (260): 583–621. https://doi.org/10.2307/2280779.

Krzanowski, W. J., and Y. T. Lai. 1988. “A Criterion for Determining the Number of Groups in a Data Set Using Sum-of-Squares Clustering.” Biometrics 44 (1): 23–34. https://doi.org/10.2307/2531893.

Krzywinski, M., and N. Altman. 2013. “Significance, P values and t-tests.” Nature Methods 10 (11): 1041–2. https://doi.org/10.1038/nmeth.2698.

Kutner, Michael H., Chris Nachtsheim, John Neter, and William Li. 2005. Applied linear statistical models.

Langsrud, Ø. 2003. “ANOVA for unbalanced data: Use Type II instead of Type III sums of squares.” Statistics and Computing 13 (2): 163–67. https://doi.org/10.1023/A:1023260610025.

Laurent, R., and P. Turk. 2013. “The Effects of Misconceptions on the Properties of Friedman’s Test.” Communications in Statistics - Simulation and Computation 42 (7): 1596–1615. https://doi.org/10.1080/03610918.2012.671874.

Lin, C. S., and M. R. Binns. 1988. “A superiority measure of cultivar performance for cultivar x location data.” Canadian Journal of Plant Science 68 (1): 193–98. https://doi.org/10.4141/cjps88-018.

Lucio, Alessandro Dal Col, Luis F Nunes, and Francisco Rego. 2016. “Nonlinear regression and plot size to estimate green beans production.” Horticultura Brasileira 34 (4): 507–13. https://doi.org/10.1590/s0102-053620160409.

Lúcio, Alessandro Dal Col, Luis Filipe Nunes, and Francisco Rego. 2015. “Nonlinear models to describe production of fruit in Cucurbita pepo and Capiscum annuum.” Scientia Horticulturae 193: 286–93. https://doi.org/10.1016/j.scienta.2015.07.021.

Lúcio, Alessandro D., Daniel Santos, and Tiago Olivoto. 2017. “Variability and Experimental Desing for Trials with Cucurbita pepo and Capsicum annuum.” Journal of Agricultural Science 9 (11): 58–75. https://doi.org/10.5539/jas.v9n11p58.

Mayer, A., B. Nagengast, J. Fletcher, and R. Steyer. 2014. “Analyzing average and conditional effects with multigroup multilevel structural equation models.” Frontiers in Psychology 5 (304): 1–16. https://doi.org/10.3389/fpsyg.2014.00304.

Miller, G. A., and J. P. Chapman. 2001. “Misunderstanding analysis of covariance.” Journal of Abnormal Psychology 110 (1): 40–48. http://www.ncbi.nlm.nih.gov/pubmed/11261398.

Milligan, Glenn W., and Martha C. Cooper. 1985. “An examination of procedures for determining the number of clusters in a data set.” Psychometrika 50 (2): 159–79. https://doi.org/10.1007/BF02294245.

Mojena, R. 1977. “Hierarchical grouping methods and stopping rules: an evaluation.” The Computer Journal 20 (4): 359–63. https://doi.org/10.1093/comjnl/20.4.359.

Mora, F., L. M. Goncalves, C. A. Scapim, E. N. Martins, and M. F. P. S. Machado. 2008. “Generalized lineal models for the analysis of binary data from propagation experiments of Brazilian orchids.” Brazilian Archives of Biology and Technology 51 (5): 963–70. https://doi.org/10.1590/S1516-89132008000500013.

Murakami, D. M., and C. D. Cruz. 2004. “Proposal of methodologies for environment stratification and analysis of genotype adaptability.” Crop Breeding and Applied Biotechnology 4 (1): 7–11. https://doi.org/10.12702/1984-7033.v04n01a02.

Nelder, J. A., and R. W. M. Wedderburn. 1972. “Generalized Linear Models.” Journal of the Royal Statistical Society. Series A (General) 135 (3): 370–84. https://doi.org/10.2307/2344614.

Niles, Henry E. 1922. “Correlation, Causation and Wright’s Theory of "Path Coefficients".” Genetics 7 (3): 258–73. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1200533/.

Nuzzo, Regina. 2014. “Scientific method: Statistical errors.” Nature 506 (7487): 150–52. https://doi.org/10.1038/506150a.

Olivoto, Tiago, and Alessandro Dal’Col Lúcio. 2020. “metan: An R package for multi‐environment trial analysis.” Methods in Ecology and Evolution 11 (6): 783–89. https://doi.org/10.1111/2041-210X.13384.

Olivoto, Tiago, Alessandro D. C. Lúcio, José A. G. Silva, Volmir S. Marchioro, Velci Q. Souza, and Evandro Jost. 2019a. “Mean Performance and Stability in Multi‐Environment Trials I: Combining Features of AMMI and BLUP Techniques.” Agronomy Journal 111 (6): 2949–60. https://doi.org/10.2134/agronj2019.03.0220.

Olivoto, Tiago, Alessandro D. C Lúcio, José A. G. Silva, Bruno G. Sari, and Maria I. Diel. 2019b. “Mean Performance and Stability in Multi‐Environment Trials II: Selection Based on Multiple Traits.” Agronomy Journal 111 (6): 2961–9. https://doi.org/10.2134/agronj2019.03.0221.

Olivoto, Tiago, Alessandro D. C Lúcio, Velci Q. de Souza, Maicon Nardino, Maria I. Diel, Bruno G. Sari, Dionatan .K. Krysczun, Daniela Meira, and Carine Meier. 2018. “Confidence Interval Width for Pearson’s Correlation Coefficient: A Gaussian-Independent Estimator Based on Sample Size and Strength of Association.” Agronomy Journal 110 (2): 503–10. https://doi.org/10.2134/agronj2017.09.0566.

Olivoto, Tiago, Maicon Nardino, Ivan Ivan Ricardo Carvalho, Diego Nicolau Follmann, M. Ferrari, Alan J. de Pelegrin, V. Jardel Szareski, Antônio Costa de Oliveira, Braulio Otomar Caron, and Velci Queiroz de Souza. 2017. “Optimal sample size and data arrangement method in estimating correlation matrices with lesser collinearity: A statistical focus in maize breeding.” African Journal of Agricultural Research 12 (2): 93–103. https://doi.org/10.5897/AJAR2016.11799.

Olivoto, T., M. Nardino, I. R. Carvalho, D. N. Follmann, M. Ferrari, V. J. Szareski, A. J. de Pelegrin, and V. Q. de Souza. 2017. “REML/BLUP and sequential path analysis in estimating genotypic values and interrelationships among simple maize grain yield-related traits.” Genetics and Molecular Research 16 (1): gmr16019525. https://doi.org/10.4238/gmr16019525.

Olivoto, T., V. Q. Souza, M. Nardino, I. R. Carvalho, M. Ferrari, A. J. Pelegrin, V. J. Szareski, and D. Schmidt. 2017. “Multicollinearity in path analysis: a simple method to reduce its effects.” Agronomy Journal 109 (1): 131–42. https://doi.org/10.2134/agronj2016.04.0196.

Patterson, H. D., and R. Thompson. 1971. “Recovery of Inter-Block Information when Block Sizes are Unequal.” Biometrika 58 (3): 545–54. https://doi.org/10.2307/2334389.

Pearson, K. 1920. “Notes on the History of Correlation.” Biometrika 13 (1): 25–45. https://doi.org/10.2307/2331722.

Piepho, H. P., and R. N. Edmondson. 2018. “A tutorial on the statistical analysis of factorial experiments with qualitative and quantitative treatment factor levels.” Journal of Agronomy and Crop Science 204 (5): 429–55. https://doi.org/10.1111/jac.12267.

Purchase, J. L., H. Hatting, and C. S. van Deventer. 2000. “Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance.” South African Journal of Plant and Soil 17 (3): 101–7. https://doi.org/10.1080/02571862.2000.10634878.

Rencher, Alvin C., and G. Bruce. Schaalje. 2008. Linear models in statistics. John Wiley & Sons.

Rodrigues-Soares, J. P, G. F. A. Jesus, E. L. T. Gonçalves, K.TN. Moraes, E. C. Chagas, F. C. M. Chaves, M. A. A. Belo, Adolfo Jatobá, J. L. P. Mouriño, and M. L. Martins. 2018. “Induced aerocystitis and hemato-immunological parameters in Nile tilapia fed supplemented diet with essential oil of Lippia alba.” Brazilian Journal of Veterinary Research and Animal Science 55 (1): 1–12. https://doi.org/10.11606/issn.1678-4456.bjvras.2018.136717.

Rutherford, A. 2001. Introducing ANOVA and ANCOVA : a GLM approach. London: SAGE.

Sari, B. G. 2018. “Parametros biologicos da producao de tomateiro via modelo logistico.” PhD thesis, Universidade Federal de Santa Maria.

Scheiner, S. M., and J. Gurevitch. 2001. Design and analysis of ecological experiments. 2nd ed. New York: Oxford University Press.

Schenider, P. R., P. S. P. Schenider, and C. A. M. Souza. 2009. Analise de regressao aplicada a engenharia florestal. Santa Maria: FACOS, UFSM.

Scott, A. J., and M. J. Symons. 1971. “Clustering Methods Based on Likelihood Ratio Criteria.” Biometrics 27 (2): 387–97. https://doi.org/10.2307/2529003.

Seber, G. A. F., and C. J. Wild. 2003. Nonlinear regression. John Wiley & Sons, Inc. https://www.wiley.com/en-us/Nonlinear+Regression-p-9780471471356.

Senoglu, Birdal, and Moti L. Tiku. 2001. “Analysis of variance in experimental design with nonnormal error distributions.” Communications in Statistics - Theory and Methods 30 (7): 1335–52. https://doi.org/10.1081/STA-100104748.

Silverman, B. W. 1998. Density Estimation for Statistics and Data Analysis. New York: Routledge. https://doi.org/10.1201/9781315140919.

Smith, A. B., B. R. Cullis, and R. Thompson. 2005. “The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches.” The Journal of Agricultural Science 143 (06): 449–62. https://doi.org/10.1017/S0021859605005587.

Snedecor, G. W., and W. G. Cochran. 1967. Statistical methods. 6th ed. Ames: Iowa State University Press.

Sneller, C. H., L. Kilgore-Norquest, and D. Dombek. 1997. “Repeatability of yield stability statistics in soybean.” Crop Science 37 (2): 383–90. https://doi.org/10.2135/cropsci1997.0011183X003700020013x.

Stevens, James (James Paul). 2009. Applied multivariate statistics for the social sciences. Routledge.

Stroup, W. W. 2013. Generalized linear mixed models : modern concepts, methods and applications. Boca Raton,FL.: CRC Press.

———. 2015. “Rethinking the Analysis of Non-Normal Data in Plant and Soil Science.” Agronomy Journal 107 (2): 811–27. https://doi.org/10.2134/agronj2013.0342.

Suzuki, R., and H. Shimodaira. 2006. “Pvclust: an R package for assessing the uncertainty in hierarchical clustering.” Bioinformatics 22 (12): 1540–2. https://doi.org/10.1093/bioinformatics/btl117.

Wickham, Hadley. 2009. Ggplot2 : elegant graphics for data analysis. Springer. https://doi.org/10.1007/978-0-387-98141-3.

Wilkinson, L. 2005. The grammar of graphics. Springer.

Wolfinger, R., and M. O’connell. 1993. “Generalized linear mixed models a pseudo-likelihood approach.” Journal of Statistical Computation and Simulation 48 (3-4): 233–43. https://doi.org/10.1080/00949659308811554.

Wright, Sewall. 1921. “Correlation and causation.” Journal of Agricultural Research 20 (7): 557–85. http://www.ssc.wisc.edu/soc/class/soc952/Wright/Wright{\_}Correlation and Causation.pdf.

———. 1923. “The Theory of Path Coefficients a Reply to Niles’s Criticism.” Genetics 8 (3): 239–55. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1200747/.

Yan, Weikai. 2002. “Singular-Value Partitioning in Biplot Analysis of Multienvironment Trial Data.” Agronomy Journal 94 (5): 990–96. https://doi.org/10.2134/agronj2002.0990.

Yan, Weikai., and Manjit S. Kang. 2003. GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press.

Yan, W., M. S. Kang, B. Ma, S. Woods, and P. L. Cornelius. 2007. “GGE Biplot vs. AMMI analysis of genotype-by-environment data.” Crop Science 47 (2): 641–53. https://doi.org/10.2135/cropsci2006.06.0374.

Yates, F. 1940. “The recovery of inter-block information in balanced incomplete block designs.” Annals of Eugenics 10 (1): 317–25. https://doi.org/10.1111/j.1469-1809.1940.tb02257.x.

Zali, H., E. Farshadfar, S. H. Sabaghpour, and R. Karimizadeh. 2012. “Evaluation of genotype × environment interaction in chickpea using measures of stability from AMMI model.” Annals of Biological Research 3 (7): 3126–36. http://eprints.icrisat.ac.in/7173/.

Zoz, T, F Steiner, A Zoz, D. D. Castagnara, T. W. Witt, M. D. Zanotto, and D. L. Auld. 2018. “Effect of row spacing and plant density on grain yield and yield components of Crambe abyssinica Hochst.” Semina: Ciencias Agrarias 39 (1): 393–402. https://doi.org/10.5433/1679-0359.2018v39n1p393.