Skip to contents

Plot the response surface model using a contour plot

Usage

# S3 method for resp_surf
plot(
  x,
  xlab = NULL,
  ylab = NULL,
  resolution = 100,
  bins = 10,
  plot_theme = theme_metan(),
  ...
)

Arguments

x

An object of class resp_surf

xlab, ylab

The label for the x and y axis, respectively. Defaults to original variable names.

resolution

The resolution of the contour plot. Defaults to 100. higher values produce high-resolution plots but may increase the computation time.

bins

The number of bins shown in the plot. Defaults to 10.

plot_theme

The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme().

...

Currently not used

Value

An object of class gg, ggplot.

Author

Tiago Olivoto tiagoolivoto@gmail.com

Examples

# \donttest{
library(metan)
# A small toy example

df <- data.frame(
 expand.grid(x = seq(0, 4, by = 1),
             y = seq(0, 4, by = 1)),
 z = c(10, 11, 12, 11, 10,
       14, 15, 16, 15, 14,
       16, 17, 18, 17, 16,
       14, 15, 16, 15, 14,
       10, 11, 12, 11, 10)
)
mod <- resp_surf(df, x, y, resp = z)
#> -----------------------------------------------------------------
#> Anova table for the response surface model 
#> -----------------------------------------------------------------
#> Analysis of Variance Table
#> 
#> Response: z
#>           Df  Sum Sq Mean Sq F value    Pr(>F)    
#> x          1   0.000   0.000    0.00         1    
#> y          1   0.000   0.000    0.00         1    
#> I(x^2)     1  12.857  12.857  106.88 3.073e-09 ***
#> I(y^2)     1 142.857 142.857 1187.50 < 2.2e-16 ***
#> x:y        1   0.000   0.000    0.00         1    
#> Residuals 19   2.286   0.120                      
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> -----------------------------------------------------------------
#> Model equation for response surface model 
#> Y = B0 + B1*A + B2*D + B3*A^2 + B4*D^2 + B5*A*D 
#> -----------------------------------------------------------------
#> Estimated parameters 
#> B0: 9.8857143
#> B1: 1.7142857
#> B2: 5.7142857
#> B3: -0.4285714
#> B4: -1.4285714
#> B5: 0.0000000
#> -----------------------------------------------------------------
#> Matrix of parameters (A) 
#> -----------------------------------------------------------------
#> -0.4285714    0.0000000 
#> 0.0000000    -1.4285714 
#> -----------------------------------------------------------------
#> Inverse of the matrix A (invA) 
#> -2.3333333    0.0000000 
#> 0.0000000    -0.7000000 
#> -----------------------------------------------------------------
#> Vetor of parameters B1 e B2 (X) 
#> -----------------------------------------------------------------
#> B1: 1.7142857
#> B2: 5.7142857
#> -----------------------------------------------------------------
#> Equation for the optimal points (A and D) 
#> -----------------------------------------------------------------
#> -0.5*(invA*X)
#> Eigenvalue 1: -0.428571
#> Eigenvalue 2: -1.428571
#> Stacionary point is maximum!
#> -----------------------------------------------------------------
#> Stacionary point obtained with the following original units: 
#> -----------------------------------------------------------------
#> Optimal dose (x): 2
#> Optimal dose (y): 2
#> Predicted: 17.3143
#> -----------------------------------------------------------------
#> Fitted model 
#> -----------------------------------------------------------------
#> A = x
#> D = y
#> y = 9.88571+1.71429A+5.71429D+-0.42857A^2+-1.42857D^2+0A*D
#> -----------------------------------------------------------------
#> Shapiro-Wilk normality test
#> p-value:  0.04213785 
#> WARNING: at 5% of significance, residuals can not be considered normal! 
#> ------------------------------------------------------------------
plot(mod)

# }