
Function reference
-
gafem() - Genotype analysis by fixed-effect models
-
gamem() - Genotype analysis by mixed-effect models
-
plot(<gafem>) - Several types of residual plots
-
plot(<gamem>) - Several types of residual plots
-
predict(<gamem>) - Predict method for gamem fits
-
print(<gamem>) - Print an object of class gamem
-
cv_ammi() - Cross-validation procedure
-
cv_ammif() - Cross-validation procedure
-
ammi_indexes()AMMI_indexes() - AMMI-based stability indexes
-
impute_missing_val() - Missing value imputation
-
performs_ammi() - Additive Main effects and Multiplicative Interaction
-
waas() - Weighted Average of Absolute Scores
-
waas_means() - Weighted Average of Absolute Scores
-
plot(<cvalidation>) - Plot the RMSPD of a cross-validation procedure
-
plot(<performs_ammi>) - Several types of residual plots
-
plot(<waas>) - Several types of residual plots
-
predict(<waas>) - Predict the means of a waas object
-
predict(<performs_ammi>) - Predict the means of a performs_ammi object
-
print(<ammi_indexes>) - Print an object of class ammi_indexes
-
print(<performs_ammi>) - Print an object of class performs_ammi
-
print(<waas>) - Print an object of class waas
-
print(<waas_means>) - Print an object of class waas_means
BLUP
Analyze genotypes in single- or multi-environment trials using mixed-effect models with variance components and genetic parameter estimation.
-
cv_blup() - Cross-validation procedure
-
gamem_met() - Genotype-environment analysis by mixed-effect models
-
hmgv()rpgv()hmrpgv()blup_indexes() - Stability indexes based on a mixed-effect model
-
waasb() - Weighted Average of Absolute Scores
-
wsmp() - Weighting between stability and mean performance
-
plot_blup() - Plot the BLUPs for genotypes
-
plot_eigen() - Plot the eigenvalues
-
plot_scores() - Plot scores in different graphical interpretations
-
plot_waasby() - Plot WAASBY values for genotype ranking
-
plot(<wsmp>) - Plot heat maps with genotype ranking
-
plot(<waasb>) - Several types of residual plots
-
predict(<waasb>) - Predict method for waasb fits
-
print(<waasb>) - Print an object of class waasb
-
gge() - Genotype plus genotype-by-environment model
-
gtb() - Genotype by trait biplot
-
gytb() - Genotype by yield*trait biplot
-
plot(<gge>) - Create GGE, GT or GYT biplots
-
predict(<gge>) - Predict a two-way table based on GGE model
-
coincidence_index() - Computes the coincidence index of genotype selection
-
fai_blup() - Multi-trait selection index
-
mps() - Mean performance and stability in multi-environment trials
-
mtmps() - Multi-trait mean performance and stability index
-
mtsi() - Multi-trait stability index
-
mgidi() - Multitrait Genotype-Ideotype Distance Index
-
plot(<fai_blup>) - Multi-trait selection index
-
plot(<mgidi>) - Plot the multi-trait genotype-ideotype distance index
-
print(<mgidi>) - Print an object of class mgidi
Print a
mgidiobject in two ways. By default, the results are shown in the R console. The results can also be exported to the directory.
-
plot(<mtsi>) - Plot the multi-trait stability index
-
plot(<mtmps>) - Plot the multi-trait stability index
-
plot(<sh>) - Plot the Smith-Hazel index
-
print(<coincidence>) - Print an object of class coincidence
-
print(<mtsi>) - Print an object of class mtsi
-
print(<mtmps>) - Print an object of class mtmps
-
print(<sh>) - Print an object of class sh
-
Smith_Hazel() - Smith-Hazel index
Genotype-environment interaction
Visualize genotype-environment interaction patterns, rank genotypes within environments, compute genotype, environment, and genotype-environment effects; cluster environments, and compute parametric and non-parametric stability indexes
-
anova_ind() - Within-environment analysis of variance
-
anova_joint() - Joint analysis of variance
-
ge_cluster() - Cluster genotypes or environments
-
ge_details() - Details for genotype-environment trials
-
ge_effects() - Genotype-environment effects
-
ge_means() - Genotype-environment means
-
ge_plot() - Graphical analysis of genotype-vs-environment interaction
-
ge_simula()g_simula() - Simulate genotype and genotype-environment data
-
ge_winners() - Genotype-environment winners
-
is_balanced_trial() - Check if a data set is balanced
-
Annicchiarico() - Annicchiarico's genotypic confidence index
-
corr_stab_ind() - Correlation between stability indexes
-
ecovalence() - Stability analysis based on Wricke's model
-
env_dissimilarity() - Dissimilarity between environments
-
env_stratification() - Environment stratification
-
ge_acv() - Adjusted Coefficient of Variation as yield stability index
-
ge_factanal() - Stability analysis and environment stratification
-
ge_polar() - Power Law Residuals as yield stability index
-
ge_reg() - Eberhart and Russell's regression model
-
ge_stats() - Parametric and non-parametric stability statistics
-
gai() - Geometric adaptability index
-
plot(<anova_joint>) - Several types of residual plots
-
plot(<env_dissimilarity>) - Plot an object of class env_dissimilarity
-
plot(<env_stratification>) - Plot the env_stratification model
-
plot(<ge_cluster>) - Plot an object of class ge_cluster
-
plot(<ge_effects>) - Plot an object of class ge_effects
-
plot(<ge_factanal>) - Plot the ge_factanal model
-
plot(<ge_reg>) - Plot an object of class ge_reg
-
print(<Annicchiarico>) - Print an object of class Annicchiarico
-
print(<anova_ind>) - Print an object of class anova_ind
-
print(<anova_joint>) - Print an object of class anova_joint
-
print(<ecovalence>) - Print an object of class ecovalence
-
print(<env_dissimilarity>) - Print an object of class env_dissimilarity
-
print(<env_stratification>) - Print the env_stratification model
-
print(<ge_factanal>) - Print an object of class ge_factanal
-
print(<ge_reg>) - Print an object of class ge_reg
-
print(<ge_stats>) - Print an object of class ge_stats
-
print(<Shukla>) - Print an object of class Shukla
-
print(<Schmildt>) - Print an object of class Schmildt
-
Schmildt() - Schmildt's genotypic confidence index
-
Fox() - Fox's stability function
-
Huehn() - Huehn's stability statistics
-
print(<Fox>) - Print an object of class Fox
-
print(<Huehn>) - Print an object ofclass
Huehn
-
print(<superiority>) - Print an object ofclass
superiority
-
print(<Thennarasu>) - Print an object ofclass
Thennarasu
-
Shukla() - Shukla's stability variance parameter
-
superiority() - Lin e Binns' superiority index
-
Thennarasu() - Thennarasu's stability statistics
-
as.lpcor() - Coerce to an object of class lpcor
-
corr_coef() - Linear and partial correlation coefficients
-
corr_plot() - Visualization of a correlation matrix
-
corr_focus() - Focus on section of a correlation matrix
-
corr_ci() - Confidence interval for correlation coefficient
-
corr_ss() - Sample size planning for a desired Pearson's correlation confidence interval
-
correlated_vars() - Generate correlated variables
-
covcor_design() - Variance-covariance matrices for designed experiments
-
get_corvars() - Generate normal, correlated variables
-
get_covmat() - Generate a covariance matrix
-
is.lpcor() - Coerce to an object of class lpcor
-
lpcor() - Linear and Partial Correlation Coefficients
-
mantel_test() - Mantel test
-
network_plot() - Network plot of a correlation matrix
-
pairs_mantel() - Mantel test for a set of correlation matrices
-
plot_ci() - Plot the confidence interval for correlation
-
plot(<corr_coef>) - Create a correlation heat map
-
plot(<correlated_vars>) - Plot an object of class correlated_vars
-
print(<corr_coef>) - Print an object of class corr_coef
-
print(<lpcor>) - Print the partial correlation coefficients
-
can_corr() - Canonical correlation analysis
-
plot(<can_cor>) - Plots an object of class can_cor
-
print(<can_cor>) - Print an object of class can_cor
-
clustering() - Clustering analysis
-
get_dist() - Get a distance matrix
-
mahala() - Mahalanobis Distance
-
mahala_design() - Mahalanobis distance from designed experiments
-
plot(<clustering>) - Plot an object of class clustering
-
colindiag() - Collinearity Diagnostics
-
non_collinear_vars() - Select a set of predictors with minimal multicollinearity
-
path_coeff()path_coeff_mat()path_coeff_seq() - Path coefficients with minimal multicollinearity
-
print(<colindiag>) - Print an object of class colindiag
-
print(<path_coeff>) - Print an object of class path_coeff
-
plot(<path_coeff>) - Plots an object of class
path_coeff
-
select_pred() - Selects a best subset of predictor variables.
-
plot_bars()plot_factbars() - Fast way to create bar plots
-
plot_lines()plot_factlines() - Fast way to create line plots
-
plot(<resp_surf>) - Plot the response surface model
-
resp_surf() - Response surface model
-
acv() - Adjusted Coefficient of Variation
-
desc_stat()desc_wider() - Descriptive statistics
-
find_outliers() - Find possible outliers in a dataset
-
inspect() - Check for common errors in multi-environment trial data
-
fill_na()has_na()prop_na()remove_rows_na()remove_rows_all_na()remove_cols_na()remove_cols_all_na()select_cols_na()select_rows_na()replace_na()random_na()has_zero()remove_rows_zero()remove_cols_zero()select_cols_zero()select_rows_zero()replace_zero() - Utilities for handling with NA and zero values
-
av_dev()ci_mean_t()ci_mean_z()cv()freq_table()freq_hist()hmean()gmean()kurt()n_missing()n_unique()n_valid()pseudo_sigma()range_data()row_col_mean()row_col_sum()sd_amo()sd_pop()sem()skew()sum_dev()ave_dev()sum_sq_dev()sum_sq()var_pop()var_amo()cv_by()max_by()min_by()means_by()mean_by()n_by()sd_by()var_by()sem_by()sum_by() - Useful functions for computing descriptive statistics
-
clip_read()clip_write() - Utilities for data Copy-Pasta
-
add_seq_block()recode_factor()df_to_selegen_54() - Utilities for data organization
-
as_numeric()as_integer()as_logical()as_character()as_factor() - Encode variables to a specific format
-
all_upper_case()all_lower_case()all_title_case()first_upper_case()extract_number()extract_string()find_text_in_num()has_text_in_num()remove_space()remove_strings()replace_number()replace_string()round_cols()tidy_strings() - Utilities for handling with numbers and strings
-
add_cols()add_rows()add_row_id()all_pairs()add_prefix()add_suffix()colnames_to_lower()colnames_to_upper()colnames_to_title()column_to_first()column_to_last()column_to_rownames()rownames_to_column()remove_rownames()column_exists()concatenate()get_levels()get_levels_comb()get_level_size()reorder_cols()remove_cols()remove_rows()select_first_col()select_last_col()select_numeric_cols()select_non_numeric_cols()select_cols()select_rows()tidy_colnames() - Utilities for handling with rows and columns
-
make_upper_tri()make_lower_tri()make_lower_upper()make_sym()tidy_sym() - Utilities for handling with matrices
-
make_long() - Two-way table to a 'long' format
-
make_mat() - Make a two-way table
-
reorder_cormat() - Reorder a correlation matrix
-
solve_svd() - Pseudoinverse of a square matrix
-
set_intersect()set_union()set_difference() - Utilities for set operations for many sets
-
venn_plot() - Draw Venn diagrams
-
progress()run_progress() - Utilities for text progress bar in the terminal
-
add_class()has_class()remove_class()set_class() - Utilities for handling with classes
-
arrange_ggplot() - Arrange separate ggplots into the same graphic
-
split_factors()as.split_factors()is.split_factors() - Split a data frame by factors
-
bind_cv() - Bind cross-validation objects
-
comb_vars() - Pairwise combinations of variables
-
doo() - Alternative to dplyr::do for doing anything
-
get_model_data()gmd()sel_gen() - Get data from a model easily
-
metan-package - Multi-Environment Trial Analysis
-
rbind_fill_id() - Helper function for binding rows
-
resca() - Rescale a variable to have specified minimum and maximum values
-
residual_plots() - Several types of residual plots
-
set_wd_here()get_wd_here()open_wd_here()open_wd() - Set and get the Working Directory quicky
-
stars_pval() - Generate significance stars from p-values
-
theme_metan()theme_metan_minimal()transparent_color()ggplot_color()alpha_color() - Personalized theme for ggplot2-based graphics
-
transpose_df() - Transpose a data frame
-
tukey_hsd() - Tukey Honest Significant Differences
-
sample_random()sample_systematic() - Random Sampling
-
data_alpha - Data from an alpha lattice design
-
data_g - Single maize trial
-
data_ge - Multi-environment trial of oat
-
data_ge2 - Multi-environment trial of maize
-
int.effects - Data for examples
-
meansGxE - Data for examples