06: Correlação canônica entre caracteres morfológicos e componentes de rendimento em genótipos de linho (Linum usitatissimum, L.)

1 Libraries

2 Dados

df <- 
  import("data/data_mgidi.csv") |> 
  remove_rows_na() |> 
  filter(epoca  %in% c("E1", "E4")) |> 
  replace_string(epoca, pattern = "E4", replacement = "E2")

3 Canônica

3.1 Modelo

can <- 
  df |> 
  can_corr(FG = c(ap, ac, nc, nr),
           SG = c(ngcap, areac, rgpla, mmg, icc))
## ---------------------------------------------------------------------------
## Matrix (correlation/covariance) between variables of first group (FG)
## ---------------------------------------------------------------------------
##           ap         ac         nc         nr
## ap 1.0000000  0.5287163  0.3155772  0.2856869
## ac 0.5287163  1.0000000 -0.2029215 -0.2280093
## nc 0.3155772 -0.2029215  1.0000000  0.5662655
## nr 0.2856869 -0.2280093  0.5662655  1.0000000
## ---------------------------------------------------------------------------
## Collinearity within first group 
## ---------------------------------------------------------------------------
## Weak multicollinearity in the matrix
## cn = 6.759
## Matrix determinant: 0.3109707 
## Largest correlation: nc x nr = 0.566 
## Smallest correlation: ac x nc = -0.203 
## Number of VIFs > 10: 0 
## Number of correlations with r >= |0.8|:  
## Variables with largest weight in the last eigenvalues: 
## ap > ac > nc > nr 
## ---------------------------------------------------------------------------
## Matrix (correlation/covariance) between variables of second group (SG)
## ---------------------------------------------------------------------------
##             ngcap      areac      rgpla         mmg        icc
## ngcap  1.00000000 0.62671978 0.37287028 -0.05537582 0.19075247
## areac  0.62671978 1.00000000 0.59475706  0.48901557 0.02779455
## rgpla  0.37287028 0.59475706 1.00000000  0.43319699 0.03159118
## mmg   -0.05537582 0.48901557 0.43319699  1.00000000 0.08147575
## icc    0.19075247 0.02779455 0.03159118  0.08147575 1.00000000
## ---------------------------------------------------------------------------
## Collinearity within second group 
## ---------------------------------------------------------------------------
## Weak multicollinearity in the matrix
## cn = 14.52
## Matrix determinant: 0.1803844 
## Largest correlation: ngcap x areac = 0.627 
## Smallest correlation: areac x icc = 0.028 
## Number of VIFs > 10: 0 
## Number of correlations with r >= |0.8|:  
## Variables with largest weight in the last eigenvalues: 
## areac > ngcap > mmg > icc > rgpla 
## ---------------------------------------------------------------------------
## Matrix (correlation/covariance) between FG and SG
## ---------------------------------------------------------------------------
##         ngcap      areac      rgpla        mmg          icc
## ap  0.2833453  0.4954944  0.3356632  0.2608546  0.106584280
## ac -0.1709379 -0.1769648 -0.2394161 -0.1742945 -0.012390649
## nc  0.2570310  0.4504205  0.9486292  0.3286273 -0.009320794
## nr  0.2775278  0.3875968  0.4942266  0.1959420  0.053042784
## ---------------------------------------------------------------------------
## Correlation of the canonical pairs and hypothesis testing 
## ---------------------------------------------------------------------------
##              Var    Percent       Sum       Corr  Lambda     Chisq DF   p_val
## U1V1 0.937212054 65.9606722  65.96067 0.96809713 0.03345 390.74129 20 0.00000
## U2V2 0.447290136 31.4801307  97.44080 0.66879753 0.53272  72.42220 12 0.00000
## U3V3 0.029747620  2.0936276  99.53443 0.17247499 0.96383   4.23616  6 0.64475
## U4V4 0.006615113  0.4655695 100.00000 0.08133335 0.99338   0.76327  2 0.68275
## ---------------------------------------------------------------------------
## Canonical coefficients of the first group 
## ---------------------------------------------------------------------------
##              U1          U2          U3         U4
## ap  0.007907902  1.33441344  0.05118299 -0.5197664
## ac  0.031486429 -0.99439129  0.96364345  0.1086589
## nc -1.061135315 -0.60958951 -0.01718989 -0.4095889
## nr  0.124753416  0.03811712  0.45212104  1.1937151
## ---------------------------------------------------------------------------
## Canonical coefficients of the second group 
## ---------------------------------------------------------------------------
##                V1         V2         V3           V4
## ngcap  0.10267926  0.2220980 -1.3096444  0.905088630
## areac  0.11327274  0.9171247  1.5176098 -0.373820392
## rgpla -1.13075412 -0.5690758  0.1023200  0.110316961
## mmg    0.09981241  0.2877891 -1.3081765 -0.494047830
## icc    0.02237442  0.1692762  0.4133638  0.002260751
## ---------------------------------------------------------------------------
## Canonical loads of the first group 
## ---------------------------------------------------------------------------
##            U1          U2        U3          U4
## ap -0.2746744  0.62717952 0.6844173 -0.25054486
## ac  0.2225497 -0.17385736 0.8911051 -0.35521395
## nc -0.9943855  0.03488872 0.0594389  0.08029517
## nr -0.4810509  0.30088253 0.2372896  0.78851339
## ---------------------------------------------------------------------------
## Canonical loads of the second group 
## ---------------------------------------------------------------------------
##                V1        V2          V3          V4
## ngcap -0.24921430 0.6010400 -0.16908476  0.73973146
## areac -0.44546844 0.8632944  0.12945585  0.01749410
## rgpla -0.98115305 0.1892214 -0.03703782  0.01151668
## mmg   -0.33849772 0.4912485 -0.41551521 -0.67899867
## icc    0.01751954 0.2426031  0.10237494  0.12775059

3.2 Correlação canônica

canc <- gmd(can, "canonical") |> round_cols(digits = 5)
# export(canc, "data/results_canonica.xlsx", which = "canonica")
datatable(canc)

3.3 Cargas canônicas

loads <- gmd(can, "loads") |> round_cols(digits = 5)
# export(loads, "data/results_canonica.xlsx", which = "loads")
datatable(loads)

4 Diagrama

4.1 Primeiro par

flowchart LR
subgraph Z["Caracteres de planta"]
direction LR
A[AP] --> |-0.274|B[planta]
C[AC] --> |0.222|B
D[NC] --> |-0.994|B
E[NR] --> |-0.481|B
end

subgraph ZA["Componentes do rendimento"]
direction RL
F[NGC] --> |-0.249|G[rendimento]
H[AC] -->  |-0.445|G
I[RGP] -->  |-0.481|G
J[MMG] -->  |-0.338|G
K[ICP] -->  |0.0175|G
end

Z <--> |0.968| ZA

4.2 segundo par

flowchart LR

subgraph Z["Caracteres de planta"]
direction LR
A([AP]) --> |0.627|B{planta}
C([AC]) --> |-0.174|B
D([NC]) --> |0.034|B
E([NR]) --> |0.301|B
end

subgraph ZA["Componentes do rendimento"]
direction RL
F([NGC]) --> | 0.601|G{rendimento}
H([AC]) -->  |0.863|G
I([RGP]) -->  |0.189|G
J([MMG]) -->  |0.491|G
K([ICP]) -->  |0.243|G
end

Z <--> |0.669| ZA

5 Section info

sessionInfo()
## R version 4.2.2 (2022-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 22621)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=Portuguese_Brazil.utf8  LC_CTYPE=Portuguese_Brazil.utf8   
## [3] LC_MONETARY=Portuguese_Brazil.utf8 LC_NUMERIC=C                      
## [5] LC_TIME=Portuguese_Brazil.utf8    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] DT_0.28         metan_1.18.0    lubridate_1.9.2 forcats_1.0.0  
##  [5] stringr_1.5.0   dplyr_1.1.2     purrr_1.0.1     readr_2.1.4    
##  [9] tidyr_1.3.0     tibble_3.2.1    ggplot2_3.4.2   tidyverse_2.0.0
## [13] rio_0.5.29     
## 
## loaded via a namespace (and not attached):
##  [1] sass_0.4.6          jsonlite_1.8.7      splines_4.2.2      
##  [4] bslib_0.5.0         cellranger_1.1.0    yaml_2.3.7         
##  [7] ggrepel_0.9.3       numDeriv_2016.8-1.1 pillar_1.9.0       
## [10] lattice_0.20-45     glue_1.6.2          digest_0.6.33      
## [13] RColorBrewer_1.1-3  polyclip_1.10-4     minqa_1.2.5        
## [16] colorspace_2.1-0    htmltools_0.5.5     Matrix_1.6-0       
## [19] plyr_1.8.8          pkgconfig_2.0.3     haven_2.5.3        
## [22] patchwork_1.1.2     scales_1.2.1        tweenr_2.0.2       
## [25] openxlsx_4.2.5.2    tzdb_0.4.0          lme4_1.1-34        
## [28] ggforce_0.4.1       timechange_0.2.0    generics_0.1.3     
## [31] farver_2.1.1        ellipsis_0.3.2      cachem_1.0.8       
## [34] withr_2.5.0         cli_3.6.1           magrittr_2.0.3     
## [37] readxl_1.4.3        evaluate_0.21       GGally_2.1.2       
## [40] fansi_1.0.4         nlme_3.1-160        MASS_7.3-60        
## [43] foreign_0.8-83      tools_4.2.2         data.table_1.14.8  
## [46] hms_1.1.3           lifecycle_1.0.3     munsell_0.5.0      
## [49] zip_2.3.0           jquerylib_0.1.4     compiler_4.2.2     
## [52] rlang_1.1.1         grid_4.2.2          nloptr_2.0.3       
## [55] rstudioapi_0.15.0   htmlwidgets_1.6.2   crosstalk_1.2.0    
## [58] rmarkdown_2.23      boot_1.3-28         gtable_0.3.3       
## [61] lmerTest_3.1-3      reshape_0.8.9       curl_5.0.1         
## [64] R6_2.5.1            knitr_1.43          fastmap_1.1.1      
## [67] utf8_1.2.3          mathjaxr_1.6-0      stringi_1.7.12     
## [70] Rcpp_1.0.11         vctrs_0.6.3         tidyselect_1.2.0   
## [73] xfun_0.39